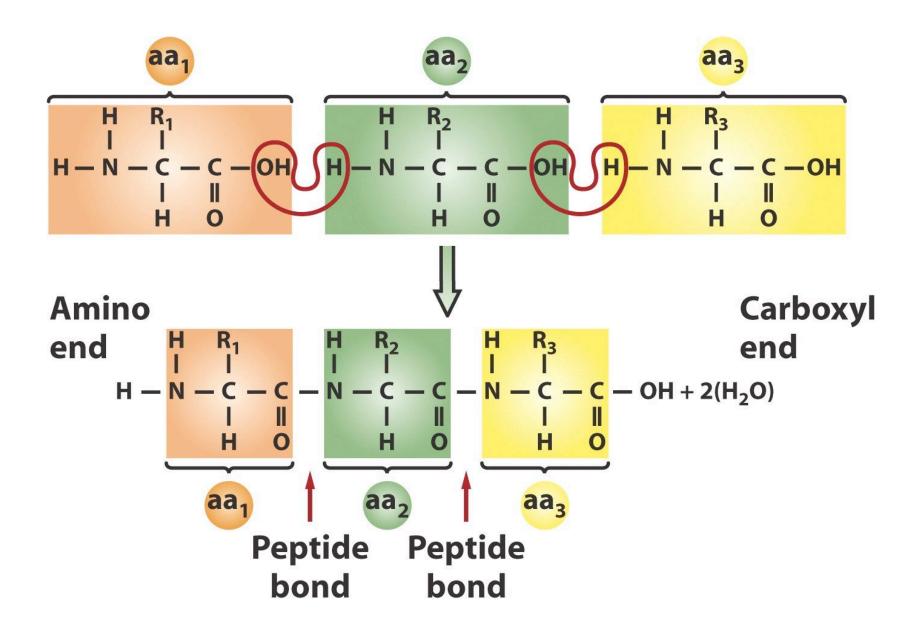
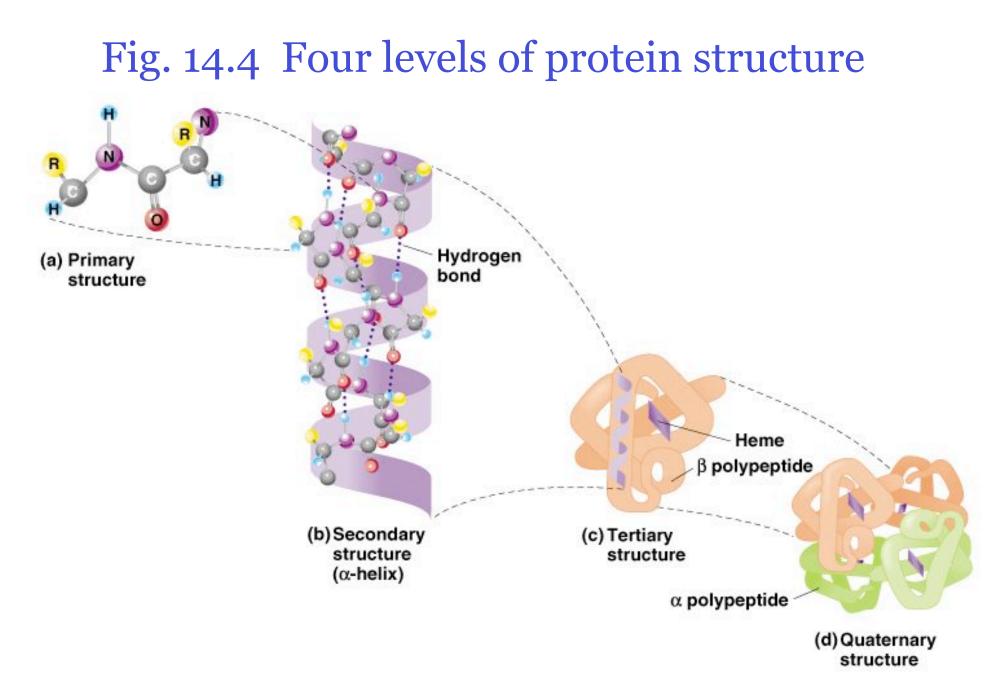

Central Dogma of Genetics

- Within each cell the genetic information flows from
 DNA to RNA to protein.
- This flow of information is <u>unidirectional</u> and <u>irreversible</u>.
- The information carried within the DNA dictates the end product (protein) that will be synthesized.
 - This information is the **genetic code**.
- Conversion of DNA encoded information to RNA
 - is called **transcription**.
- The information from a mRNA is then **translated** to an amino acid sequence in the corresponding protein

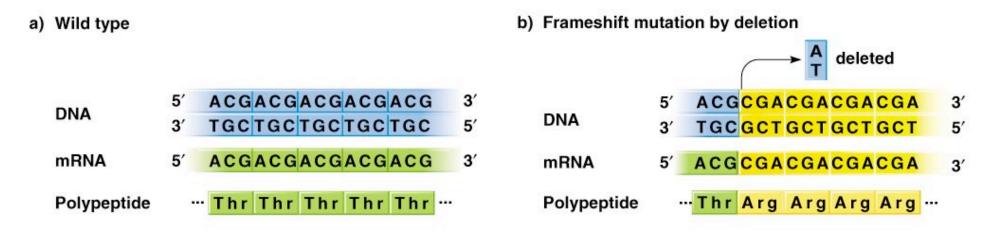

Central Dogma



Proteins

- Building blocks are Amino acids
- AA's are joined between the carboxyl end of one AA to the amino group of the other
 - One water molecule is lost
 - Enzyme called peptidyl transferase is involved

Protein Structure

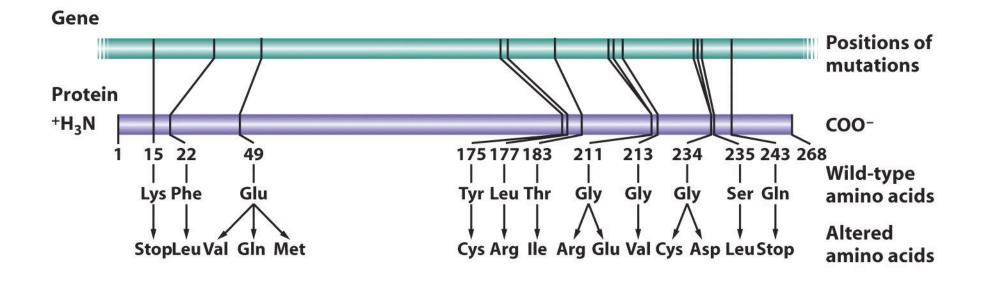

Deducing the genetic code

- Before the genetic code was cracked, it was a mystery as to how four nucleotides could encode for 20 amino acids.
- One or two nucleotides representing each amino acid would not suffice
 - A one-letter code could specify four amino acids
 - A two letter code could specify 16 ($4^2 = 16$)
 - To accommodate 20, at least three letters are needed $(4^3 = 64)$
- therefore 3 letters to a codon was the most likely option
- Experimental research carried out on bacteria (figure 6.5)showed that the genetic code is a triplet code.

Understanding the Genetic Code

- In the 1950s and 1960s, Charles Yanofsky studied the gene tryptophan synthetase,
 - which synthesizes Tryptophan (Trp),
 - and allows bacteria to grow in Trp free medium.
- He made several substitution mutants (auxotrophs),
 - which required Trp in the medium in order to grow.
- Using genetic recombinations, he made a map of the various mutations.
- Using technology available in the 1950s he sequenced the mutant proteins being synthesized to correlate the mutation in the DNA sequence with the corresponding change in the amino acid sequence.

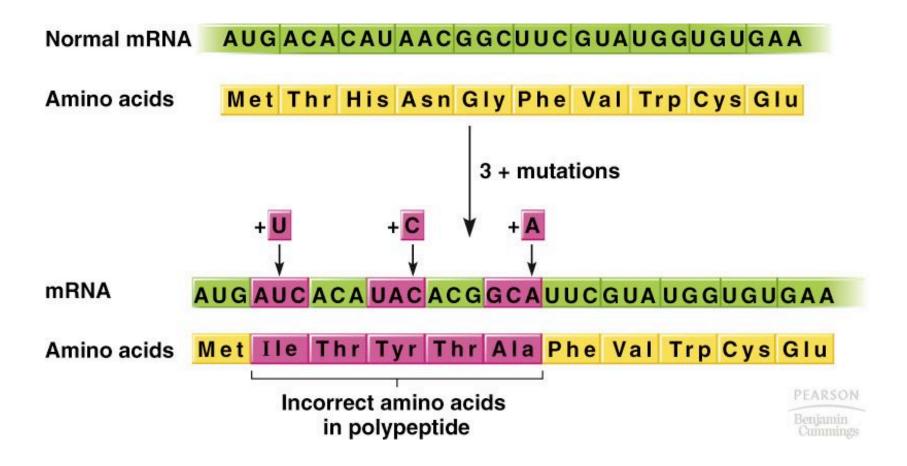
Fig. 14.5 Reversion of a deletion frameshift mutation by a nearby addition mutation



Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Interpretations from Yanofsky's experiments

- The changes were colinear.
- Each mutation resulted in only one amino acid change:
 - Each nucleotide was part of only one codon: the genetic code was non-overlapping.
- Different point mutations in the same position (based on his power of resolution) could result in different amino acids in the product:
 - The nucleotide sequence determines the amino acid sequence.


Gene-Protein colinearity

The Genetic Code is a triplet code

- Recombination between two different mutants in the same position resulted in wild-type E.Coli:
 One codon consists of more than one nucleotide.
- The addition of 3 nucleotides results in 1 additional amino acid in the protein
- The deletion of 3 nucleotides results in 1 less amino acid in the protein

The Genetic Code is a triplet code

12/27

Most amino acids are encoded by multiple codons

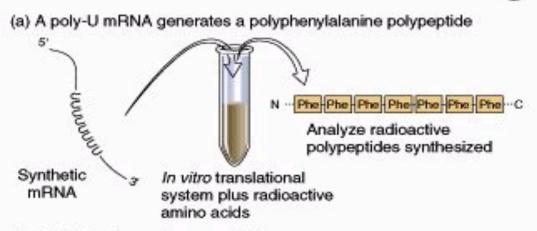
- There are potentially 64 codons, and only 20 amino acids.
- If each amino acid is encoded by only one codon,
 - there would be 44 codons which would not code for any amino acid.
- This would imply that more than 50% of the time, a frame shift would result in a codon that would be a 'nonsense' codon.
 - This was contrary to experimental observations
- Conclusion: *the genetic code is degenerate*.
 - More than one codon can code for each amino acid.
 - Each amino acid can be coded for by more than one codon
 - Each codon only codes for one amino acid

Characteristics of the Genetic Code

- It is a triplet code.
 - Each three-nucleotide codon in the mRNA specifies one amino acid
- It is comma free.
 - mRNA is read three bases at a time without skipping any bases.
- It is non-overlapping/non-ambiguous.
 - Each nucleotide is part of only one codon and is read only once during translation.
- It is almost universal.
 - In nearly all organisms, most codons have the same amino acid meaning.
- It is degenerate.
 - Of 20 amino acids, 18 are encoded by 2 or more codons.
- The code has start and stop signals.
 - AUG is the usual start signal and defines the open reading frame.
- Stop signals are codons with no corresponding tRNA
 - the nonsense or chain-terminating codons.
 - generally three stop codons: UAG, UAA, and UGA. ¹⁴/27

Fig. 14.8 The genetic code

	U	Seco C	nd letter A	G	
U	UUU Phe UUC (F) UUA Leu UUG (L)	UCU UCC Ser UCA (S) UCG	UAU Tyr UAC (Y) UAA Stop UAG Stop	UGU Cys UGC (C) UGA Stop UGG Trp	U C A G
tter O	CUU CUC Leu CUA (L) CUG	CCU CCC Pro CCA (P) CCG	CAU His CAC (H) CAA Gln CAG (Q)	(W) CGU CGC Arg CGA (R) CGG	D V O U
First letter	AUU AUC AUA AUG (I) AUG (M)	ACU ACC Thr ACA (T) ACG	AAU Asn AAC ^(N) AAA _{Lys} AAG (K)	AGU Ser AGC (S) AGA Arg AGG (R)	D D C D Third lette
G	GUU Val GUA (V) GUG	GCU GCC Ala GCA (A) GCG	GAU Asp GAC (D) GAA Glu GAG (E)	GGU GGC Gly GGA (G) GGG	U C A G


= Chain termination codon (stop)

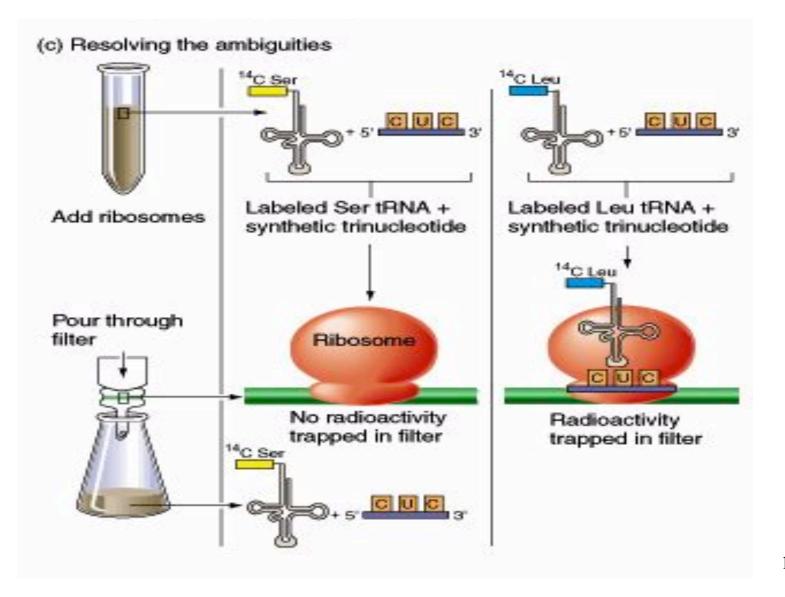
Peter J. Russell, *iGenetics*: Copyright © Pearson Education

= Initiation codon

Cracking the Genetic Code-I

- Discovery of mRNA as an intermediate molecule helped crack the genetic code.
- Scientists developed cell extracts which when mixed with mRNA, could synthesize polypeptide chains:
 - in vitro translation.
- Scientists were also able to synthesize short segments of mRNA of defined sequence.
- Using defined mRNA sequences, scientists began cracking the genetic code in a systematic fashion:
 - UUUUUU---= Phe-Phe---,
 - UCUCUC---- Ser-Leu-----, etc.
- Some ambiguities were resolved by further experimentation.

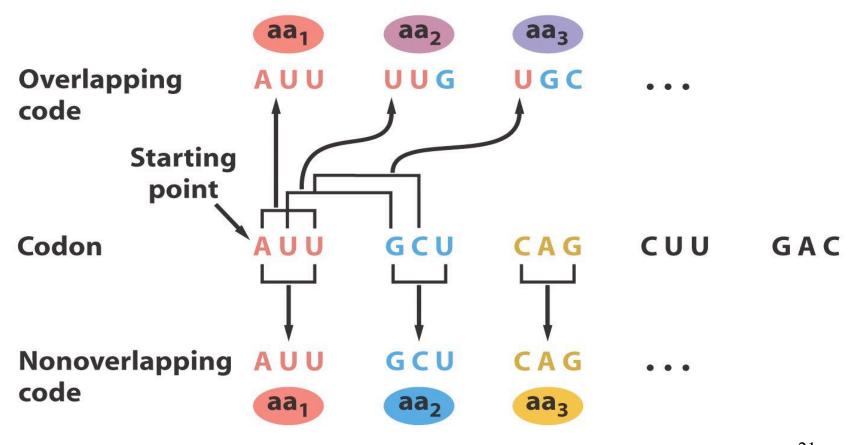
Cracking the Code


(b) Analyzing the coding possibilities

Synthetic mRNA	Polypeptides synthesized		
	Polypeptides with one amino acid		
poly-U_UUUU	Phe-Phe-Phe		
poly-C CCCC	Pro-Pro-Pro		
poly-A AAAA	Lys-Lys-Lys		
poly-G GGGG	Gly-Gly-Gly		
Repeating dinucleotides	Polypeptides with alternating amino acids		
poly-UC UCUC	Ser-Leu-Ser-Leu		
poly-AG AGAG	Arg-Glu-Arg-Glu		
poly-UG UGUG	Cys-Val-Cys-Val		
poly-AC ACAC	Thr-His-Thr-His		
Repeating trinucleotides	Three polypeptides each with one amino acid		
poly-UUC UUCUUCUUC	Phe-Phe and Ser-Ser and Leu-Leu		
poly-AAG AAGAAGAAG	Lys-Lys and Arg-Arg and Glu-Glu		
poly-UUG UUGUUGUUG	Leu-Leu and Cys-Cys and Val-Val		
poly-UAC UACUACUAC	Tyr-Tyr and Thr-Thr and Leu-Leu		
Repeating tetranucleotides	Polypeptides with repeating units of four amino acids		
poly-UAUC UAUCUAUC	Tyr-Leu-Ser-IIe-Tyr-Leu-Ser-IIe		
poly-UUAC UUACUUAC	Leu-Leu-Thr-Tyr-Leu-Leu-Thr-Tyr		
poly-GUAA GUAAGUAA	none		
poly-GAUA GAUAGAUA	none		

Cracking the Genetic Code-II

- By 1965 it was known
 - that polypeptide chains were synthesized on ribosomes,
 - and that different tRNA molecules carry the appropriate amino acid to the ribosome
 - depending on the genetic codon on the mRNA.
- Using radiolabeled amino acids and defined mRNA sequences,
 - it was determined which codon corresponded to which amino acid.


Cracking the Code

Cracking the Genetic Code-III

- Further experiments determined that the direction of 5' to 3' corresponded to the Amino-terminal to Carboxy-terminal direction in the polypeptide.
- The starting point is always defined by the codon AUG,
 which codes for methionine.
- It was found that three codons: **UAA**, **UAG** and **UGA** did not code for any amino acid:
 - they were **nonsense** or **stop codons**.

The Genetic Code Is Non-Overlapping

²¹ (Fig. 9-6)

Universality of the Genetic Code

- All living beings use the same genetic code.
- Genetic code evolved early in life, and has remained constant over billions of years because of the lack of tolerance for change.
- Some exceptions exist:
 - in some ciliates, there is only one nonsense codon.
- In eukaryotic mitochondria, there are some changes:
 - e.g.: in yeast, CUA codes for Thr instead of Leu.
- The impact of this change in these organisms/organelles may not be as drastic, since there are very few proteins encoded by these systems, allowing evolution of the genetic code.

- A codon is:
 - 1. A 3 base sequence of mRNA that codes for an amino acid
 - 2. A 3 base sequence of rRNA that codes for an amino acid
 - 3. A 3 base sequence of tRNA that codes for an amino acid
 - 4. A 3 base sequence of DNA that codes for an amino acid

- An anti-codon is:
 - 1. A 3 base sequence of mRNA that compliments the codon
 - -2. A 3 base sequence of tRNA that compliments the codon
 - 3. A 3 base sequence of tRNA that codes for an amino acid
 - 4. A 3 base sequence of DNA that codes for an amino acid

- Which change does NOT cause a frameshift mutation?
 - 1) 1 basepair deletion
 - 2) 2 basepair insertion
 - 3) 2 basepair deletion
 - 4) 3 basepair insertion

34. The sequence of a complete eukaryotic gene encoding the small protein Met Arg Val Tyr Ala is shown. All of the written sequences on the template strand are transcribed into RNA. (14 pts total)

strand A 5'ACGCATGCGGGTGTGCCCCAGGTCTACGCGTGAAAT 3' strand B 3'TGCGTACGCCCACACGGGGTCCAGATGCGCACTTTA 5'

a. Which strand (A or B) is the template strand? (2 pts)

b. What is the sequence of the nucleotides in the **processed** mRNA molecule for this gene? Indicate 5' and 3' directions of this gene. (4 pts)

	Second letter								
		U	С	А	G				
First letter	U	$\left. \begin{array}{c} UUU\\ UUC \end{array} \right\} Phe \\ UUA\\ UUG \end{array} \right\} Leu$	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G			
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	$\left. \begin{matrix} CAU \\ CAC \end{matrix} \right\}_{His} \\ \begin{matrix} CAA \\ CAG \end{matrix} \right\}_{GIn}$	CGU CGC CGA CGG	Third letter			
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	$\left. \begin{array}{c} AAU \\ AAC \end{array} \right\} Asn \\ AAA \\ AAG \\ AAG \\ \end{array} \right\} Lys$	AGU AGC AGA AGG Arg	U C A G			
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G			

Homework Problems

Chapter 14

1, 8, 10, 14, 20, 21